Equivalence class NR_20.0_26836.2 Current
# | IFE | Standardized name | Molecule | Organism | Source | Rfam | Title | Method | Res. Å | Date |
---|---|---|---|---|---|---|---|---|---|---|
1 | 4BW0|1|A (rep) | HMKT-7 | Haloarcula marismortui | The molecular recognition of kink turn structure by the L7Ae class of proteins | X-ray diffraction | 2.33 | 2013-11-06 | |||
2 | 5FJ1|1|B | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
3 | 5FJ1|1|E | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
4 | 5FJ1|1|C | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
5 | 5FJ1|1|A | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
6 | 5FJ1|1|D | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
7 | 5FJ1|1|F | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
8 | 5FJ1|1|H | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 | |||
9 | 5FJ1|1|G | HMKT-7 | Haloarcula marismortui | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-ray diffraction | 2.75 | 2016-05-25 |
Release history
Release | 2.93 | 2.94 | 2.95 | 2.96 | 2.97 | 2.98 | 2.99 | 2.100 | 2.101 | 2.102 | 2.103 | 2.104 | 2.105 | 2.106 | 2.107 | 2.108 | 2.109 | 2.110 | 2.111 | 2.112 | 2.113 | 2.114 | 2.115 | 2.116 | 2.117 | 2.118 | 2.119 | 2.120 | 2.121 | 2.122 | 2.123 | 2.124 | 2.125 | 2.126 | 2.127 | 2.128 | 2.129 | 2.130 | 2.131 | 2.132 | 2.133 | 2.134 | 2.135 | 2.136 | 2.137 | 2.138 | 2.139 | 2.140 | 2.141 | 2.142 | 2.143 | 2.144 | 2.145 | 2.146 | 2.147 | 2.148 | 2.149 | 2.150 | 2.151 | 2.152 | 2.153 | 2.154 | 2.155 | 2.156 | 2.157 | 2.158 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 3.10 | 3.11 | 3.12 | 3.13 | 3.14 | 3.15 | 3.16 | 3.17 | 3.18 | 3.19 | 3.20 | 3.21 | 3.22 | 3.23 | 3.24 | 3.25 | 3.26 | 3.27 | 3.28 | 3.29 | 3.30 | 3.31 | 3.32 | 3.33 | 3.34 | 3.35 | 3.36 | 3.37 | 3.38 | 3.39 | 3.40 | 3.41 | 3.42 | 3.43 | 3.44 | 3.45 | 3.46 | 3.47 | 3.48 | 3.49 | 3.50 | 3.51 | 3.52 | 3.53 | 3.54 | 3.55 | 3.56 | 3.57 | 3.58 | 3.59 | 3.60 | 3.61 | 3.62 | 3.63 | 3.64 | 3.65 | 3.66 | 3.67 | 3.68 | 3.69 | 3.70 | 3.71 | 3.72 | 3.73 | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.80 | 3.81 | 3.82 | 3.83 | 3.84 | 3.85 | 3.86 | 3.87 | 3.88 | 3.89 | 3.90 | 3.91 | 3.92 | 3.93 | 3.94 | 3.95 | 3.96 | 3.97 | 3.98 | 3.99 | 3.100 | 3.101 | 3.102 | 3.103 | 3.104 | 3.105 | 3.106 | 3.107 | 3.108 | 3.109 | 3.110 | 3.111 | 3.112 | 3.113 | 3.114 | 3.115 | 3.116 | 3.117 | 3.118 | 3.119 | 3.120 | 3.121 | 3.122 | 3.123 | 3.124 | 3.125 | 3.126 | 3.127 | 3.128 | 3.129 | 3.130 | 3.131 | 3.132 | 3.133 | 3.134 | 3.135 | 3.136 | 3.137 | 3.138 | 3.139 | 3.140 | 3.141 | 3.142 | 3.143 | 3.144 | 3.145 | 3.146 | 3.147 | 3.148 | 3.149 | 3.150 | 3.151 | 3.152 | 3.153 | 3.154 | 3.155 | 3.156 | 3.157 | 3.158 | 3.159 | 3.160 | 3.161 | 3.162 | 3.163 | 3.164 | 3.165 | 3.166 | 3.167 | 3.168 | 3.169 | 3.170 | 3.171 | 3.172 | 3.173 | 3.174 | 3.175 | 3.176 | 3.177 | 3.178 | 3.179 | 3.180 | 3.181 | 3.182 | 3.183 | 3.184 | 3.185 | 3.186 | 3.187 | 3.188 | 3.189 | 3.190 | 3.191 | 3.192 | 3.193 | 3.194 | 3.195 | 3.196 | 3.197 | 3.198 | 3.199 | 3.200 | 3.201 | 3.202 | 3.203 | 3.204 | 3.205 | 3.206 | 3.207 | 3.208 | 3.209 | 3.210 | 3.211 | 3.212 | 3.213 | 3.214 | 3.215 | 3.216 | 3.217 | 3.218 | 3.219 | 3.220 | 3.221 | 3.222 | 3.223 | 3.224 | 3.225 | 3.226 | 3.227 | 3.228 | 3.229 | 3.230 | 3.231 | 3.232 | 3.233 | 3.234 | 3.235 | 3.236 | 3.237 | 3.238 | 3.239 | 3.240 | 3.241 | 3.242 | 3.243 | 3.244 | 3.245 | 3.246 | 3.247 | 3.248 | 3.249 | 3.250 | 3.251 | 3.252 | 3.253 | 3.254 | 3.255 | 3.256 | 3.257 | 3.258 | 3.259 | 3.260 | 3.261 | 3.262 | 3.263 | 3.264 | 3.265 | 3.266 | 3.267 | 3.268 | 3.269 | 3.270 | 3.271 | 3.272 | 3.273 | 3.274 | 3.275 | 3.276 | 3.277 | 3.278 | 3.279 | 3.280 | 3.281 | 3.282 | 3.283 | 3.284 | 3.285 | 3.286 | 3.287 | 3.288 | 3.289 | 3.290 | 3.291 | 3.292 | 3.293 | 3.294 | 3.295 | 3.296 | 3.297 | 3.298 | 3.299 | 3.300 | 3.301 | 3.302 | 3.303 | 3.304 | 3.305 | 3.306 | 3.307 | 3.308 | 3.309 | 3.310 | 3.311 | 3.312 | 3.313 | 3.314 | 3.315 | 3.316 | 3.317 | 3.318 | 3.319 | 3.320 | 3.321 | 3.322 | 3.323 | 3.324 | 3.325 | 3.326 | 3.327 | 3.328 | 3.329 | 3.330 | 3.331 | 3.332 | 3.333 | 3.334 | 3.335 | 3.336 | 3.337 | 3.338 | 3.339 | 3.340 | 3.341 | 3.342 | 3.343 | 3.344 | 3.345 | 3.346 | 3.347 | 3.348 | 3.349 | 3.350 | 3.351 | 3.352 | 3.353 | 3.354 | 3.355 | 3.356 | 3.357 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2016-09-16 | 2016-09-23 | 2016-09-30 | 2016-10-07 | 2016-10-14 | 2016-10-21 | 2016-10-28 | 2016-11-04 | 2016-11-11 | 2016-11-18 | 2016-11-25 | 2016-12-02 | 2016-12-09 | 2016-12-16 | 2016-12-23 | 2016-12-30 | 2017-01-06 | 2017-01-13 | 2017-01-20 | 2017-01-27 | 2017-02-03 | 2017-02-10 | 2017-02-17 | 2017-02-24 | 2017-03-03 | 2017-03-10 | 2017-03-17 | 2017-03-24 | 2017-03-31 | 2017-04-11 | 2017-04-15 | 2017-04-26 | 2017-04-29 | 2017-05-09 | 2017-05-15 | 2017-05-20 | 2017-05-27 | 2017-06-07 | 2017-06-11 | 2017-06-21 | 2017-06-24 | 2017-06-28 | 2017-07-04 | 2017-07-10 | 2017-07-15 | 2017-07-26 | 2017-07-31 | 2017-08-05 | 2017-08-12 | 2017-08-19 | 2017-08-26 | 2017-09-03 | 2017-09-09 | 2017-09-16 | 2017-09-23 | 2017-09-30 | 2017-10-07 | 2017-10-14 | 2017-10-21 | 2017-10-28 | 2017-11-03 | 2017-11-10 | 2017-11-17 | 2017-11-24 | 2017-12-01 | 2017-12-08 | 2017-12-15 | 2017-12-22 | 2017-12-29 | 2018-01-05 | 2018-01-12 | 2018-01-19 | 2018-01-26 | 2018-02-02 | 2018-02-09 | 2018-02-16 | 2018-02-23 | 2018-03-01 | 2018-03-08 | 2018-03-15 | 2018-03-22 | 2018-03-29 | 2018-04-06 | 2018-04-13 | 2018-04-20 | 2018-04-27 | 2018-05-04 | 2018-05-11 | 2018-05-18 | 2018-05-25 | 2018-06-01 | 2018-06-08 | 2018-06-15 | 2018-06-22 | 2018-06-29 | 2018-07-06 | 2018-07-13 | 2018-07-20 | 2018-07-27 | 2018-08-03 | 2018-08-10 | 2018-08-17 | 2018-08-24 | 2018-08-31 | 2018-09-07 | 2018-09-14 | 2018-09-21 | 2018-09-28 | 2018-10-05 | 2018-10-12 | 2018-10-19 | 2018-10-26 | 2018-11-02 | 2018-11-09 | 2018-11-16 | 2018-11-23 | 2018-11-30 | 2018-12-07 | 2018-12-14 | 2018-12-21 | 2018-12-28 | 2019-01-04 | 2019-01-11 | 2019-01-18 | 2019-01-25 | 2019-02-01 | 2019-02-08 | 2019-02-15 | 2019-02-22 | 2019-03-01 | 2019-03-08 | 2019-03-15 | 2019-03-22 | 2019-03-29 | 2019-04-05 | 2019-04-12 | 2019-04-19 | 2019-04-26 | 2019-05-03 | 2019-05-10 | 2019-05-17 | 2019-05-24 | 2019-05-31 | 2019-06-07 | 2019-06-14 | 2019-06-21 | 2019-06-28 | 2019-07-05 | 2019-07-12 | 2019-07-19 | 2019-07-26 | 2019-08-02 | 2019-08-09 | 2019-08-16 | 2019-08-23 | 2019-08-28 | 2019-09-04 | 2019-09-11 | 2019-09-19 | 2019-09-25 | 2019-10-03 | 2019-10-09 | 2019-10-16 | 2019-10-23 | 2019-10-30 | 2019-11-06 | 2019-11-13 | 2019-11-20 | 2019-11-27 | 2019-12-04 | 2019-12-11 | 2019-12-18 | 2019-12-25 | 2020-01-01 | 2020-01-08 | 2020-01-15 | 2020-01-22 | 2020-01-29 | 2020-02-05 | 2020-02-12 | 2020-02-19 | 2020-02-26 | 2020-03-04 | 2020-03-11 | 2020-03-18 | 2020-03-25 | 2020-04-01 | 2020-04-08 | 2020-04-15 | 2020-04-22 | 2020-04-29 | 2020-05-06 | 2020-05-13 | 2020-05-20 | 2020-05-27 | 2020-06-03 | 2020-06-10 | 2020-06-17 | 2020-06-24 | 2020-07-01 | 2020-07-08 | 2020-07-15 | 2020-07-22 | 2020-07-29 | 2020-08-05 | 2020-08-12 | 2020-08-19 | 2020-08-26 | 2020-09-02 | 2020-09-09 | 2020-09-16 | 2020-09-23 | 2020-09-30 | 2020-10-07 | 2020-10-14 | 2020-10-21 | 2020-10-28 | 2020-11-04 | 2020-11-11 | 2020-11-18 | 2020-11-25 | 2020-12-02 | 2020-12-09 | 2020-12-16 | 2020-12-23 | 2020-12-30 | 2021-01-06 | 2021-01-13 | 2021-01-20 | 2021-01-27 | 2021-02-03 | 2021-02-10 | 2021-02-17 | 2021-02-24 | 2021-03-03 | 2021-03-10 | 2021-03-17 | 2021-03-24 | 2021-03-31 | 2021-04-07 | 2021-04-14 | 2021-04-21 | 2021-04-28 | 2021-05-05 | 2021-05-12 | 2021-05-19 | 2021-05-26 | 2021-06-02 | 2021-06-09 | 2021-06-16 | 2021-06-23 | 2021-06-30 | 2021-07-07 | 2021-07-14 | 2021-07-21 | 2021-07-28 | 2021-08-04 | 2021-08-11 | 2021-08-18 | 2021-08-25 | 2021-09-01 | 2021-09-08 | 2021-09-15 | 2021-09-22 | 2021-09-29 | 2021-10-06 | 2021-10-13 | 2021-10-20 | 2021-10-27 | 2021-11-03 | 2021-11-10 | 2021-11-17 | 2021-11-24 | 2021-12-01 | 2021-12-08 | 2021-12-15 | 2021-12-22 | 2021-12-29 | 2022-01-05 | 2022-01-12 | 2022-01-19 | 2022-01-26 | 2022-02-02 | 2022-02-09 | 2022-02-16 | 2022-02-23 | 2022-03-02 | 2022-03-09 | 2022-03-16 | 2022-03-23 | 2022-03-30 | 2022-04-06 | 2022-04-13 | 2022-04-20 | 2022-04-27 | 2022-05-04 | 2022-05-11 | 2022-05-18 | 2022-05-25 | 2022-06-01 | 2022-06-08 | 2022-06-15 | 2022-06-22 | 2022-06-29 | 2022-07-06 | 2022-07-13 | 2022-07-20 | 2022-07-27 | 2022-08-03 | 2022-08-10 | 2022-08-17 | 2022-08-24 | 2022-08-31 | 2022-09-07 | 2022-09-14 | 2022-09-21 | 2022-09-28 | 2022-10-05 | 2022-10-12 | 2022-10-19 | 2022-10-26 | 2022-11-02 | 2022-11-09 | 2022-11-16 | 2022-11-23 | 2022-11-30 | 2022-12-07 | 2022-12-14 | 2022-12-21 | 2022-12-28 | 2023-01-04 | 2023-01-11 | 2023-01-18 | 2023-01-25 | 2023-02-01 | 2023-02-08 | 2023-02-15 | 2023-02-22 | 2023-03-01 | 2023-03-08 | 2023-03-15 | 2023-03-22 | 2023-03-29 | 2023-04-05 | 2023-04-12 | 2023-04-19 | 2023-04-26 | 2023-05-03 | 2023-05-10 | 2023-05-17 | 2023-05-24 | 2023-05-31 | 2023-06-07 | 2023-06-14 | 2023-06-21 | 2023-06-28 | 2023-07-05 | 2023-07-12 | 2023-07-19 | 2023-07-26 | 2023-08-02 | 2023-08-09 | 2023-08-16 | 2023-08-23 | 2023-08-30 | 2023-09-06 | 2023-09-13 | 2023-09-20 | 2023-09-27 | 2023-10-04 | 2023-10-11 | 2023-10-18 | 2023-10-25 | 2023-11-01 | 2023-11-08 | 2023-11-15 | 2023-11-24 | 2023-11-29 | 2023-12-06 | 2023-12-13 | 2023-12-20 | 2023-12-27 | 2024-01-03 | 2024-01-10 | 2024-01-17 | 2024-01-24 | 2024-01-31 | 2024-02-07 | 2024-02-14 | 2024-02-21 | 2024-02-28 | 2024-03-06 | 2024-03-13 | 2024-03-20 | 2024-03-27 | 2024-04-03 | 2024-04-10 | 2024-04-17 | 2024-04-24 | 2024-05-01 | 2024-05-08 | 2024-05-15 | 2024-05-22 | 2024-05-29 | 2024-06-05 | 2024-06-12 | 2024-06-19 | 2024-06-26 | 2024-07-03 | 2024-07-10 | 2024-07-17 | 2024-07-25 | 2024-07-31 | 2024-08-07 | 2024-08-14 | 2024-08-21 | 2024-08-28 | 2024-09-04 | 2024-09-11 | 2024-09-18 | 2024-09-25 | 2024-10-02 | 2024-10-09 | 2024-10-16 |
Parents
This class | Parent classes | Release id | Intersection | Added to this class | Only in parent |
---|---|---|---|---|---|
NR_20.0_26836.2 | NR_20.0_26836.1 | 2.93 | (8) 5FJ1|1|A, 5FJ1|1|B, 5FJ1|1|C, 5FJ1|1|D, 5FJ1|1|E, 5FJ1|1|F, 5FJ1|1|G, 5FJ1|1|H | (1) 4BW0|1|A | (0) |
NR_20.0_26836.2 | NR_20.0_70905.1 | 2.93 | (1) 4BW0|1|A | (8) 5FJ1|1|A, 5FJ1|1|B, 5FJ1|1|C, 5FJ1|1|D, 5FJ1|1|E, 5FJ1|1|F, 5FJ1|1|G, 5FJ1|1|H | (0) |
Children
This class | Descendant classes | Release id | Intersection | Only in this class | Added to child |
---|
Instances are ordered to put similar structures near each other. Select one instance to see its 3D structure. Selecting two or more instances will show their superposition, but only chains with identical numbers of observed nucleotides will superpose well. Large structures are slow to display; this tool is not designed for that.
#S | View | PDB | Title | Method | Resolution | Length |
---|---|---|---|---|---|---|
1 | 5FJ1|1|A | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
2 | 5FJ1|1|G | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
3 | 5FJ1|1|F | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
4 | 5FJ1|1|E | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
5 | 5FJ1|1|B | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
6 | 5FJ1|1|H | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
7 | 5FJ1|1|C | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
8 | 5FJ1|1|D | Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group | X-RAY DIFFRACTION | 2.75 | 24 | |
9 | 4BW0|1|A | The molecular recognition of kink turn structure by the L7Ae class of proteins | X-RAY DIFFRACTION | 2.33 | 26 |
Heat map of mutual geometric discrepancy, in Angstroms per nucleotide. The ordering in the heat map is the same as in the table. The colorbar ranges from 0 to the maximum observed discrepancy. Click above the diagonal to select a range of structures, below the diagonal to select two structures.
Coloring options: